Вконтакте Facebook Twitter Лента RSS

Повышающий стабилизатор напряжения (Troyka-модуль). Распаковка и внешний вид

Казалось бы, что еще можно написать о повышающем модуле MT3608 после статей от kirich ?
Но у меня своё маленькое применение, причем самому даже не хватило мозгов додуматься до этого: подсказал знакомый. Статья для тех, у кого в китайском мультиметре села батарея «Крона».

В первую очередь, меня привлекла низкая цена, и я как-то не смотрел на рейтинг продавца… На Али иногда, очень редко, но бывают нормальные продавцы с низким рейтингом. Для хорошего старта на рынке, нужно прилагать максимум усилий и данный продавец, имхо, это прекрасно понимает.


Заказывал на сумму не менее $2: 4 обозреваемых модуля и - заказ пришел через 16 дней (Украина, Харьков), а транзисторов оказалось не 50, а 100!
Судя по тому, что они звонятся положительным щупом у базы, это n-p-n , сопротивление база-коллектор и база-эмиттер 773Ом. Замечал раньше случаи, что первому покупателю высылают дополнительные плюшки, в этот раз повезло и мне!


Упакована посылка не без пупырки, обратный адрес почти «Къюбей»:


Итак, вернёмся к мультиметру… ВОт так он выглядит у меня:


жмут аккумуляторов! Всё это лежит на столе и почти не транспортабельно. Для нормальной его работы необходимо напряжение в районе 8-9В, ток «крайне мал» (измерять его нечем). Покупать Крону чет не хочется, за то есть много аккумуляторов и, чтобы как-то облегчить конструкцию было принято решение поместить внутрь повышающий модуль.


Светодиодов на нем нет - и это хорошо! Отпаивать жалко, замазывать чёрным термоклеем надоело.
Подключаем на вход платы питание (2 и более вольт) вращаем переменный резистор и пока еще живым мультиметром контролируем напряжение на выходе платы:

при изменении напряжения на входе, на выходе держится заданное


устанавливаем в 9-с-чем-то вольт.
Перед платой можно установить выключатель, аккумултор(ы) можно поместить внутрь корпуса, можно даже предусмотреть его зарядку с помощью платы заряда за $0.2 .

Но мне пара батареек на проводах снаружи не помешает, так более универсально.
Включил на прозвонку - пищит-заливается:

Более полный и квалифицированный обзор этого и другого похожего повышающих модулей от kirich можно прочесть по ссылке - - и лучше ту статью прочесть перед манипуляциями, описанными в этой, там есть полезные советы;)
А также можно другие обзоры этого модуля.

Планирую купить +56 Добавить в избранное Обзор понравился +51 +85

Благодаря развитию современной электроники, в большом количестве выпускаются специализированные микросхемы стабилизаторы тока и напряжения. Они делятся по функционалу на два основных вида, DC DC повышающий преобразователь напряжения и понижающие. Некоторые совмещают в себе оба типа, но это сказывается на КПД не в лучшую сторону.

Когда то многие радиолюбители мечтали о импульсных стабилизаторах, но они были редкими и дефицитными. Особенно радует ассортимент в китайских магазинах.


  • 1. Применение
  • 2. Популярные преобразования
  • 3. Повышающие преобразователи напряжения
  • 4. Примеры повышателей
  • 5. Tusotek
  • 6. На XL4016
  • 7. На XL6009
  • 8. MT3608
  • 9. Высоковольтные на 220
  • 10. Мощные преобразователи

Применение

Недавно я закупил много различных светодиодов на 1W, 3W, 5W, 10W, 20W, 30W, 50W, 100W. Все они низкого качества, для сравнения их с качественными. Чтобы всю эту кучу подключить и запитать у меня есть блоки питания от ноутбуков на 12 В и 19V. Пришлось активно полистать Aliexpress в поисках низковольтных светодиодных драйверов.

Были куплены современные повышающие преобразователи напряжения DC DC и понижающие, на 1-2 Ампера и мощные на 5-7 ампер. К тому же они отлично подойдут для подключения ноутбука к 12В в автомобиле, 80-90 ватт потянут. Они вполне подойдут в качестве зарядного устройства для автомобильных аккумуляторов на 12В и 24В.

В китайских интернет-магазинах немного подороже стабилизаторов напряжения.

Популярными микросхемами для повышающих импульсных стабилизаторов стали:

  1. LM2577, устаревшая с низким КПД;
  2. XL4016, в 2 раза эффективней 2577;
  3. XL6009;
  4. MT3608.

Стабилизаторы обозначаются таким образом AC-DC, DC-DC. АС – это переменный ток, DC – это постоянный. Это облегчит поиск, если указать в запросе.

Делать DC DC повышающий преобразователь своими руками не рационально, потрачу слишком много времени на сборку и настройку. У китайцев можно купить за 50-250руб, эта цена включает и доставку. За эту сумму получу почти готовое изделие, которое можно максимально быстро доработать.

Данные импульсные ИМС используются совместно с другими, написал характеристики и datasheet к популярным ИМС для питания , .

Популярные преобразования

Стабилизаторы-повышатели классифицируются на низковольтные и высоковольтные от 220 до 400 вольт. Конечно есть готовые блоки с фиксированным значением повышения, но я предпочитаю настраиваемые, у них более широкий функционал.

Чаще всего востребованы преобразования:

  1. 12В — 19V;
  2. 12 — 24 Вольт;
  3. 5 — 12V;
  4. 3 — 12В
  5. 12 — 220В;
  6. 24В — 220В.

Повышающие называют автомобильными инверторами.

Повышающие преобразователи напряжения

Мой лабораторный блок питания работает от блока ноутбука на 19V 90W, но этого не хватает для проверки последовательно подключенных светодиодов. Последовательная LED цепочка требует от 30В до 50В. Покупать готовый блок на 50-60 Вольт и 150W оказалось дороговато, около 2000 руб. Поэтому заказал первый повышающий стабилизатор за 500 руб. с повышением до 50В. После проверки оказалось, что он максимум до 32В, потому что на входе и выходе стоят конденсаторы на 35V. Убедительно написал продавцу своё возмущение, и через пару дней мне вернули денежку.

Заказал второй до 55V под брендом Tusotek за 280руб, повышатель оказался отличный. С 12В легко повышает до 60V, выше крутить построечный резистор не стал, вдруг сгорит. Радиатор приклеен на теплопроводящий клей, поэтому маркировку микросхемы посмотреть не удалось. Охлаждение сделано немного неправильно, теплоотводная площадка диода Шотки и контроллера прикреплена к плате, а не к радиатору.

Примеры повышателей

XL4016

..

Рассмотрим 4 модели, которые у меня есть в наличии. Тратить время на фото не стал, взял и продавцов.

Характеристики.

Tusotek XL4016 Драйвер MT3608
Входное, В 6 – 35В 6 – 32В 5 – 32В 2-24V
Ток на входе до 10А до 10А
Выход, В 6 – 55В 6 – 32В 6 – 60В до 28В
Ток на выходе 5А, макс 7А 5А, макс 8А макс 2А 1А, макс 2А
Цена 260руб 250руб 270руб 55руб

У меня большой опыт работы с китайскими товарами, большинство из них сразу имеют недостатки. Перед эксплуатацией их осматриваю и дорабатываю для увеличения надежности всей конструкции. В основном это проблемы сборки, которые возникают при быстрой сборке изделий. Дорабатываю светодиодные прожекторы, лампы для дома, автомобильные лампы ближнего и дальнего света, контроллеры для управления дневными ходовыми огнями ДХО. Рекомендую это делать всем, за минимум потраченного времени срок службы можно увеличить вдвое.

Будьте бдительны, не все имеют защиту от короткого замыкания, перегрева, перегрузки и неправильного подключения.

Реальная мощность зависит от режима, в спецификациях указывают максимальную. Характеристики конечно у каждого производителя будут отличаться, они ставят разные диоды, дроссель мотают проводом разной толщины.

Tusotek

На мой взгляд, самый лучший из всех повышающих стабилизаторов. У некоторых бывает элементы не имеют запаса по характеристикам или они ниже чем у ШИМ микросхем, из-за чего они не могут дать и половины обещанного тока. У Tusotek на входе стоит конденсатор 1000мФ 35V, на выходе 470мФ 63V. Теплоотводной стороной с металлической пластиной они припаяны к плате. Но припаяны плохо и косо, на плате лежит только один край, под другим щель. Без разбора не понятно, насколько хорошо они запаяны. Если совсем плохо, то лучше их демонтировать и поставить этой стороной на радиатор, охлаждение улучшится в 2 раза.

Переменным резистором выставляется необходимое количество вольт. Оно останется неизменным, если менять напряжение на входе, оно от него не зависит. Например, ставил на выходе 50В, на входе с 5В повышал до 12В, поставленные 50V не менялись.

На XL4016

Этот преобразователь имеет такую особенность, что может повышать только до 50% от входного количества вольт. Если подключить 12В, то максимальное увеличение будет 18В. В описании было указано, что его можно применять для ноутбуков, которые питаются максимум от 19V. Но его главное предназначение оказалось работа с ноутбуками от автомобильного аккумулятора. Наверное отграничение в 50% можно убрать, изменив резисторы, которые задают этот режим. Вольты на выходе напрямую зависят от количества входящих.

Отвод тепла сделан гораздо лучше, радиаторы поставлены правильно. Только вместо термопасты теплопроводящая прокладка, чтобы избежать электрического контакта с радиатором. На входе конденсатор 470мФ 50V, на другом конце 470мФ на 35V.

На XL6009

Представитель современных эффективных преобразователей, как и устаревшие модели на LM2596 выпускается с нескольких вариантах, от миниатюрных до моделей с индикаторами напряжения.

Пример эффективности:

  • 92% при преобразовании 12V в 19V, нагрузка 2А.

В даташите сразу указана схема использования в качестве питания ноутбука в автомобиле от 10V до 30V. Так же на XL6009 легко реализовать двуполярное питания на +24 и -24В. Как у большинства преобразователей КПД снижается, чем выше разница напряжений и больше Ампер.

MT3608

Миниатюрная модель с хорошим КПД до 97%, частота ШИМ 1,2 МГц. Эффективность повышается при увеличении входящего напряжения и падает при увеличении тока. На повышающем преобразователе MT3608 можно рассчитывать на небольшой ток, внутренне ограничение 4А на случай замыкания. По вольтам желательно не превышать 24.

Высоковольтные на 220

Блоки преобразования с 12, 24 вольт на 220 широко распространены у автолюбителей как . Используются для подключения приборов с питанием на 220В. У китайцев в основном продаются 7-10 моделей таких модулей, остальное это готовые устройства. Цена от 400 руб. Отдельно хочу отметить, если например на готовом блоке указано 500W, то это часто будет кратковременная максимальная мощность. Реальная долговременная будет около 240W.

Мощные преобразователи

Для особых случаев бывают нужны мощные DC-DC повышающие преобразователи на 10-20А и до 120В. Покажу несколько популярных и доступных моделей. Они в основном не имеют маркировки или продавец её скрывает, чтобы не покупали в другом месте. Лично не тестировал, по вольтажу они сосуществуют по обещанным характеристикам. А вот ампер будет немного поменьше. Хотя изделия такой ценовой категории у меня всегда держат заявленную нагрузку, покупал похожие аппараты только с ЖК экранами.

600W

Мощный №1:

  1. power 600W;
  2. 10-60V преобразует в 12-80V;
  3. цена от 800руб.

Найти можно по запросу «600W DC 10-60V to 12-80V Boost Converter Step Up»

400W

Мощный №2:

  1. power 400W;
  2. 6-40V преобразует в 8-80V;
  3. на выходе до 10А;
  4. цена от 1200руб.

Для поиска укажите в поисковике «DC 400W 10A 8-80V Boost Converter Step-Up»

B900W

Мощный №3:

  1. power 900W;
  2. 8-40V преобразует в 10-120V;
  3. на выходе до 15А.
  4. цена от 1400руб.

Единственный блок который обозначают как B900W и его можно легко найти.

Иногда надо получить высокое напряжение из низкого. Например, для высоковольтного программатора, питающегося от 5ти вольтового USB, надыбать где то 12 вольт.

Как быть? Для этого существуют схемы DC-DC преобразования. А также специализированные микросхемы, позволяющие решить эту задачу за десяток деталек.

Принцип работы
Итак, как сделать из, например, пяти вольт нечто большее чем пять? Способов можно придумать много — например заряжать конденсаторы параллельно, а потом переключать последовательно. И так много много раз в секунду. Но есть способ проще, с использованием свойств индуктивности сохранять силу тока.

Чтобы было предельно понятно покажу вначале пример для сантехников.

Фаза 1

Заслонка резко закрывается. Потоку больше деваться некуда, а турбина, будучи разогнанной продолжает давить жидкость вперед, т.к. не может мгновенно встать. Причем давит то она ее с силой большей чем может развить источник. Гонит жижу через клапан в аккумулятор давления. Откуда же часть (уже с повышеным давлением) уходит в потребитель. Откуда, благодаря клапану, уже не возвращается.

Фаза 3

И вновь заслонка закрывается, а турбина начинает яростно продавливать жидкость в аккумулятор. Восполняя потери которые там образовались на фазе 3.

Назад к схемам
Вылезаем из подвала, скидываем фуфайку сантехника, забрасываем газовый ключ в угол и с новыми знаниями начинаем городить схему.

Вместо турбины у нас вполне подойдет индуктивность в виде дросселя. В качестве заслонки обычный ключ (на практике — транзистор), в качестве клапана естественно диод, а роль аккумулятора давления возьмет на себя конденсатор. Кто как не он способен накапливать потенциал. Усе, преобразователь готов!

Фаза 1

Ключ размыкается, но катушку уже не остановить. Запасенная в магнитном поле энергия рвется наружу, ток стремится поддерживаться на том же уровне, что и был в момент размыкания ключа. В результате, напряжение на выходе с катушки резко подскакивает (чтобы пробить путь току) и прорвавшись сквозь диод набивается в конденстор. Ну и часть энергии идет в нагрузку.

Фаза 3

Ключ размыкается и энергия из катушки вновь ломится через диод в конденсатор, повышая просевшее за время фазы 3 напряжение. Цикл замыкается.

Как видно из процесса, видно, что за счет большего тока с источника, мы набиваем напряжение на потребителе. Так что равенство мощностей тут должно соблюдаться железно. В идеальном случае, при КПД преобразователя в 100%:

U ист *I ист = U потр *I потр

Так что если наш потребитель требует 12 вольт и кушает при этом 1А, то с 5 вольтового источника в преобразователь нужно вкормить целых 2.4А При этом я не учел потерь источника, хотя обычно они не очень велики (КПД обычно около 80-90%).

Если источник слаб и отдать 2.4 ампера не в состоянии, то на 12ти вольтах пойдут дикие пульсации и понижение напряжения — потребитель будет сжирать содержимое конденсатора быстрей чем его туда будет забрасывать источник.

Схемотехника
Готовых решений DC-DC существует очень много. Как в виде микроблоков, так и специализированных микросхем. Я же не буду мудрить и для демонстрации опыта приведу пример схемы на MC34063A которую уже использовал в примере .

  • SWC/SWE выводы транзисторного ключа микросхемы SWC — это его коллектор, а SWE — эмиттер. Максимальный ток который он может вытянуть — 1.5А входящего тока, но можно подключить и внешний транзистор на любой желаемый ток (подробней в даташите на микросхему).
  • DRC — коллектор составного транзистора
  • Ipk — вход токовой защиты. Туда снимается напряжение с шунта Rsc если ток будет превышен и напряжение на шунте (Upk = I*Rsc) станет выше чем 0.3 вольта, то преобразователь заглохнет. Т.е. для ограничения входящего тока в 1А надо поставить резистор на 0.3 Ом. У меня на 0.3 ома резистора не было, поэтому я туда поставил перемычку. Работать будет, но без защиты. Если что, то микросхему у меня убьет.
  • TC — вход конденсатора, задающего частоту работы.
  • CII — вход компаратора. Когда на этом входе напряжение ниже 1.25 вольт — ключ генерирует импульсы, преобразователь работает. Как только становится больше — выключается. Сюда, через делитель на R1 и R2 заводится напряжение обратной связи с выхода. Причем делитель подбирается таким образом, чтобы когда на выходе возникнет нужное нам напряжение, то на входе компаратора как раз окажется 1.25 вольт. Дальше все просто — напряжение на выходе ниже чем надо? Молотим. Дошло до нужного? Выключаемся.
  • Vcc — Питание схемы
  • GND — Земля

Все формулы по расчету номиналов приведены в даташите. Я же скопирую из него сюда наиболее важную для нас таблицу:

Вытравил, спаял…

Вот так вот. Простая схемка, а позволяет решить ряд проблем.

Как обидно, когда компактную схему портит большущий блок батареек. Бо́льшая часть плат требует стабилизированного напряжения 5 В, поэтому приходится использовать не менее 4 алкалиновых батареек AA или 6 NiMH-аккумуляторов и подключать их через понижающий стабилизатор. Решить эту проблему можно воспользовавшись повышающим стабилизатором, который увеличит напряжение и одновременно сделает его стабильным.

При помощи этого модуля вы можете собрать миниатюрное устройство, питающееся хоть от часовой батарейки на 3 В. Лишь бы хватило токоотдачи батарейки. С тем же успехом можно заменить малоёмкую «Крону» на блок из двух пальчиковых или мизинчиковых батареек.

Выходное напряжение задаётся триммером. Диапазон выходных напряжений - 5-28 В. Разметки на триммере нет, поэтому для проверки правильности задания напряжения потребуется вольтметр .

Минимальное входное напряжение модуля - 2,7 В, что позволяет запитывать устройства всего от одного элемента Li-Ion или двух алкалиновых батареек.

Любые преобразования энергии в реальных условиях сопровождаются потерями. Но мы постарались получить как можно более высокий КПД. Для нашего модуля он составляет 0,8…0,9 в зависимости от разности напряжений на входе и выходе, и тока потребителя.

Чтобы легко было понять, есть на выходе напряжение или нет, мы предусмотрели светодиод. Его яркость почти не зависит от выходного напряжения, т.к. запитывается он через специальную схему.

Основой модуля является микросхема .

Подключение

Подключение этого Troyka-модуля отличается от стандартного: вместо трёхпроводного разъёма он имеет два двухконтактных клеммника. Один из них - это входные питание и земля, другой - выходные. Земли входа и выхода электрически соединены друг с другом. Для удобства мы поместили обозначения «GND», «Vin» и «Vout» прямо на плату рядом с клеммниками.

Характеристики

  • Входное напряжение: 2,7-14 В
  • Выходное напряжение: 5-28 В
  • Максимальный выходной ток: 0,8 А
  • КПД: 0,8…0,9 в зависимости от разницы напряжений на входе и выходе, и тока
  • Габариты: 25,4×25,4 мм

Повышающий преобразователь с напряжения 3 в 12 Вольт - обзор и тестирование готового модуля . Достаточно часто электронное устройство требует такого напряжения питания, которое нельзя обеспечить от 1-2 гальванических элементов, а питание от батареи из большого числа элементов неприемлемо по тем или иным причинам, например в связи с массогабаритными ограничениями.

Еще одной проблемой батарей, собираемых из большого числа отдельных элементов, является снижение надежности. В случае если соединения между элементами выполнено чисто механически, без пайки или сварки, велика вероятность нарушение любого из многочисленных контактов. Причиной этого может быть окисление места контакта, выскальзывание гальванического элемента из колодки от вибрации и т.п. Если гальванические элементы соединены последовательно, а так чаще всего и бывает, то это приведет к обесточиванию устройства.

По этим причинам может оказаться выгодным питать радиоэлектронное устройство от небольшой батареи через повышающий преобразователь, который преобразует низкое постоянное напряжение источника тока в более высокое постоянное напряжение, подаваемое на вход электронного устройства. Примером такого преобразователя может служить модуль SX1308, приобретенный на ru.aliexpress.com

По заявлению продавца прибор работоспособен в диапазоне входных напряжений 2-24 В, давая при этом на выходе напряжение 2-28 В. Как заявляет производитель модуль может быть нагружен током до 2 А, что глядя на размеры модуля и полное отсутствие каких-либо специальных мер для охлаждения устройства вызывает определенные сомнения, во всяком случае если речь идет о более менее долговременной работе.

Конструктивно модуль представляет собой печатную плату размером 23 х 16 х 14 мм. Для подключения источника питания и нагрузки предусмотрены маркированные металлизированные отверстия.

Для тестирования устройства была собрана следующая схема:

В качестве нагрузки использован резистор ПЭВ-25, сопротивлением 510 Ом. Резистор такой мощности использован, чтобы протекающий через него ток не смог привести к заметному нагреванию резистора, а, следовательно, к изменению его сопротивления.

Результаты измерения представлены в таблицах 1 и 2

Таблица 1 Испытания модуля SX1308 с нагрузкой ПЭВ-25 510 Ом

  • 7,3 3,14 3,17
  • 12,3 3.13 4,09
  • 18,9 3,13 5,02
  • 29,7 3,11 6,03
  • 42,0 3,10 7,01
  • 56,5 3,07 8,05
  • 76,7 3,05 9,05
  • 100 3,03 10,01
  • 130 3,00 11,00
  • 147 2,95 12,02

Таблица 2 Испытания модуля SX1308 на холостом ходу

  • Входной ток, мА Входное напряжение, В Выходное напряжение, В
  • 8,7 3,08 15,1
  • 16,4 3,07 20,2
  • 28 3,06 25,1
  • 42 3,05 30,8

Как видно из приведенных выше измерений, получить заявленное КПД в 95% не удалось. При этом следует иметь в виду, что при большом значении выходного напряжения сильно увеличивается ток, потребляемый самим преобразователем. Следует отметить, что это именно повышающий преобразователь, т.е. на его выходе напряжение всегда больше напряжения питания. Регулирование напряжения производится с помощью многооборотного подстроечного резистора. В целом благодаря малым размерам модуль хорошо подходит для портативных устройств с небольшим энергопотреблением. В частности при помощи модуля SX1308 можно организовать питание плат

© 2024 Строим с умом